Microscopic structure




The standard definition of a glass (or vitreous solid) is a solid formed by rapid melt quenching. However, the term "glass" is often defined in a broader sense, to describe any non-crystalline (amorphous) solid that exhibits a glass transition when heated towards the liquid state.

Glass is an amorphous solid. Although the atomic-scale structure of glass shares characteristics of the structure of a supercooled liquid, glass exhibits all the mechanical properties of a solid. As in other amorphous solids, the atomic structure of a glass lacks the long-range periodicity observed in crystalline solids. Due to chemical bonding constraints, glasses do possess a high degree of short-range order with respect to local atomic polyhedra. The notion that glass flows to an appreciable extent over extended periods of time is not supported by empirical research or theoretical analysis (see viscosity in solids). Laboratory measurements of room temperature glass flow do show a motion consistent with a material viscosity on the order of 1017–1018 Pa s.

Formation from a supercooled liquid

Question, Web Fundamentals.svg Unsolved problem in physics :
What is the nature of the transition between a fluid or regular solid and a glassy phase? "The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition." —P.W. Anderson
(more unsolved problems in physics )

For melt quenching, if the cooling is sufficiently rapid (relative to the characteristic crystallization time) then crystallization is prevented and instead the disordered atomic configuration of the supercooled liquid is frozen into the solid state at Tg. The tendency for a material to form a glass while quenched is called glass-forming ability. This ability can be predicted by the rigidity theory. Generally, a glass exists in a structurally metastable state with respect to its crystalline form, although in certain circumstances, for example in atactic polymers, there is no crystalline analogue of the amorphous phase.

Glass is sometimes considered to be a liquid due to its lack of a first-order phase transition where certain thermodynamic variables such as volume, entropy and enthalpy are discontinuous through the glass transition range. The glass transition may be described as analogous to a second-order phase transition where the intensive thermodynamic variables such as the thermal expansivity and heat capacity are discontinuous. Nonetheless, the equilibrium theory of phase transformations does not entirely hold for glass, and hence the glass transition cannot be classed as one of the classical equilibrium phase transformations in solids.

Comments

Popular posts from this blog

Occurrence in nature

Uses