Physical properties




Optical

Glass is in widespread use in optical systems due to its ability to refract, reflect, and transmit light following geometrical optics. The most common and oldest applications of glass in optics are as lenses, windows, mirrors, and prisms. The key optical properties refractive index, dispersion, and transmission, of glass are strongly dependent on chemical composition and, to a lesser degree, its thermal history. Optical glass typically has a refractive index of 1.4 to 2.4 and Abbe number, which characterises dispersion, of 15 to 100. Refractive index may be modified by high-density (refractive index increases) or low-density (refractive index decreases) additives.

Glass transparency results from the absence of grain boundaries which diffusely scatter light in polycrystalline materials. Semi-opacity due to crystallization may be induced in many glasses by maintaining them for a long period at a temperature just insufficient to cause fusion. In this way, the crystalline, devitrified material, known as Réaumur's glass porcelain is produced. Although generally transparent to visible light, glasses may be opaque to other wavelengths of light. While silicate glasses are generally opaque to infrared wavelengths with a transmission cut-off at 4 μm, heavy-metal fluoride and chalcogenide glasses are transparent to infrared wavelengths of 7 to 18 μm, respectively. The addition of metallic oxides results in different coloured glasses as the metallic ions will absorb wavelengths of light corresponding to specific colours.

Other

In the manufacturing process, glasses can be poured, formed, extruded and moulded into forms ranging from flat sheets to highly intricate shapes. The finished product is brittle and will fracture, unless laminated or tempered to enhance durability. Glass is typically inert, resistant to chemical attack, and can mostly withstand the action of water, making it an ideal material for the manufacture of containers for foodstuffs and most chemicals. Nevertheless, although usually highly resistant to chemical attack, glass will corrode or dissolve under some conditions. The materials that make up a particular glass composition have an effect on how quickly the glass corrodes. Glasses containing a high proportion of alkali or alkaline earth elements are more susceptible to corrosion than other glass compositions.

The density of glass varies with chemical composition with values ranging from 2.2 grams per cubic centimetre (2,200 kg/m3) for fused silica to 7.2 grams per cubic centimetre (7,200 kg/m3) for dense flint glass. Glass is stronger than most metals, with a theoretical tensile strength estimated at 14 gigapascals (2,000,000 psi) to 35 gigapascals (5,100,000 psi) due to its ability to undergo reversible compression without fracture. However, the presence of scratches, bubbles, and other microscopic flaws lead to a typical range of 14 megapascals (2,000 psi) to 175 megapascals (25,400 psi) in most commercial glasses. Several processes such as toughening can increase the strength of glass. Carefully drawn flawless glass fibres can be produced with strength of up to 11.5 gigapascals (1,670,000 psi).

Reputed flow

The observation that old windows are sometimes found to be thicker at the bottom than at the top is often offered as supporting evidence for the view that glass flows over a timescale of centuries, the assumption being that the glass has exhibited the liquid property of flowing from one shape to another. This assumption is incorrect, as once solidified, glass stops flowing. Instead, glass manufacturing processes in the past produced sheets of non-uniform thickness leading to observed sagging and ripples in old windows.

Comments

Popular posts from this blog

Occurrence in nature

Uses

Microscopic structure